Architectural Framework and Applications of IoT in Smart Cities

¹Banarasi Lal Prajapati, ²Arun Kumar Rai ¹M.Tech Scholar, ²Assistant Professor, ¹Department of Computer Science and Engineering, Vedica Institute of Technology, Bhopal (M.P) ²Department of Computer Science and Engineering, Vedica Institute of Technology, Bhopal (M.P) Email: ¹banarsi906@gmail.com, ²raiaruniitr@gmail.com

* Corresponding Author: Banarasi Lal Prajapati

Abstract: This paper studies the alteration of smart cities through IoT, brought about by architecture, addressing how interrelated devices, systems, and platforms assure urban efficiency, sustainability, and the well-being of citizens. It presents a layered IoT architecture consisting of sensing, network, and application layers, which enables real-time data collection, transmission, and intelligent decision-making in core urban domains such as transportation, energy, waste, and healthcare. The paper also studies challenges in integration, including interoperability, scalability, and real-time data processing, which are desperate for the deployment of resilient, adaptive, and smart city infrastructures. AI, edge computing, and blockchain are identified as emerging technologies that address these challenges and improve IoT. By describing the architectural framework, novel solutions, and relevant use cases, the paper creates the idea of IoT as the driving force towards adaptive, resilient, and citizen-oriented urban ecosystems.

Keywords: Internet of Things (IoT), smart cities, urban development, IoT architecture, smart infrastructure, sustainability, scalability, interoperability, edge computing, artificial intelligence (AI).

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of interconnected devices, sensors, and systems that communicate and exchange data over the internet without human intervention. It encompasses a broad range of applications, from household appliances to complex industrial machinery and urban infrastructure. By enabling real-time data collection, analysis, and automated responses, IoT creates an intelligent ecosystem that improves operational efficiency and decision-making across various sectors, including healthcare, transportation, and urban management. A smart city leverages IoT and other digital technologies to enhance the quality of life for its citizens, optimize resource utilization, and promote sustainable development. It integrates infrastructure components such as smart grids, intelligent transport systems, and connected public services to create a more efficient, livable, and environmentally friendly urban environment. Through IoT, smart cities enable dynamic governance, reduce operational costs, and offer innovative, responsive services [1]–[4].

As urbanization accelerates, cities face challenges like overcrowding, resource scarcity, and environmental stress. IoT addresses these issues by enabling smarter city operations through data-driven solutions. It allows for real-time monitoring and management of resources such as water, electricity, and transportation, resulting in improved efficiency, reduced waste, and cost savings. Key contributions of IoT in urban transformation include the development of smart grids that monitor and optimize energy consumption, reducing wastage by aligning supply with demand. Additionally, IoT-powered traffic management systems utilize data from sensors, cameras, and vehicles to alleviate congestion and enhance road safety. In waste management, smart bins equipped with sensors notify authorities when they are full, allowing for efficient collection and reduced environmental impact. Collectively, these advancements demonstrate IoT's potential to reshape cities into intelligent, responsive, and citizen-focused environments [5]–[7].

IoT also supports sustainability and resilience in cities through enablers such as active decision-making and preparedness for disasters. Sensors embedded in the critical infrastructure, such as bridges and buildings, monitor the structural integrity and detect potential failures and allow for timely intervention that would prevent catastrophic events. Moreover, IoT technologies can predict and manage environmental risks such as flood or air pollution through weather station data, water level sensor data, and air quality monitor data. Real-time insights and actionable intelligence in IoT empower city administrators to take proper decisions for promoting urban resilience, protecting citizens, and achieving long-term sustainability objectives. This all-round approach to urban transformation places IoT at the heart of building smarter, more liveable cities for the future [8]–[10]

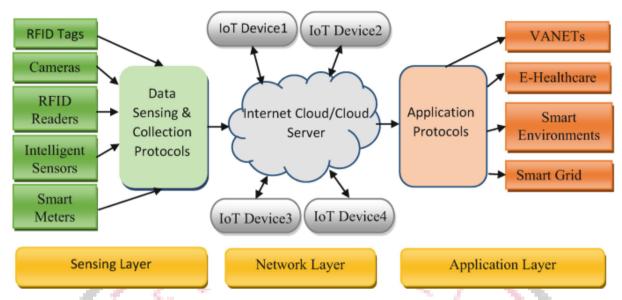


Figure 1 Cloud-Based IoT Architecture [6]

The figure 1 signifies a cloud-based IoT architecture with three main layers-the Sensing Layer, Network Layer, and Application Layer. The Sensing Layer comprises several data-generating devices such as RFID tags, cameras, RFID readers, intelligent sensors, and smart meters. These devices collect real-time data from the physical environment and manage it through appropriate data sensing and data collection protocols. This information is passed on to the Network Layer, where IoT devices act intermediaries to transfer data to and from the central cloud server. Then, cloud infrastructure will be used for data storage, data processing, and communication management. At the end of the application layers, application-specific protocols are used for conversion of data into useful services in various domains, such as VANETs, E-Healthcare systems, Smart Environments, and Smart Grids. The combination of the layers, therefore, makes the architecture that allows seamless data flow, real-time analytics, and intelligent service delivery in a large set of IoT-enabled applications.

II. IOT ARCHITECTURE IN SMART CITIES

The IoT architecture for smart cities has three interlinked layers: sensing layer, network layer, and application layer. The layers are required to coexist for in-time collection, transfer, and smart processing of urban data. The sensing layer has an array of devices such as CCTV cameras, sensors, RFID tags, and smart meters that record real-time data from an urban environment. Thereafter, over the network layer, which consists of cloud platform, internet protocols, and communication technologies to ensure that the real-time data transfer between the devices and central server is secured and efficient, this data is transported. On the one hand, the application layer uses the processed data for implementing a plethora of smart city services, such as smart environment (e.g., air quality monitoring, smart-home), smart grid (e.g., dynamic energy distribution and pricing), vehicular networks (e.g., intelligent traffic system), and e-health (e.g., patient monitoring and emergency alert). On the other, these layers form the entire IoT ecosystem required to solve major urban issues that take resource efficiency and life quality of a city to the next level [11]–[16].

Expounding more, further, the IoT architecture for a smart city can also be classified into four core components, namely, sensors, networks, cloud infrastructure, and data analytics. This provides a synergistic working environment that sustains robust and scalable IoT systems. Sensors form the heart of the architecture and act as the primary interface with the physical world by capturing environmental data such as temperature, motion, traffic patterns, energy usage, pollution levels, and waste accumulation. Real-time data leaves the devices through various network technologies that include Wi-Fi, 4G/5G, LoRa, ZigBee, and Bluetooth, all designed to promote connectivity among IoT devices [8]. Once the data is in cloud infrastructure, it is then stored, managed, and processed with the use of high-performance and scalable platforms that can handle massive volumes of data. The analytic phase is data-oriented, with the implementation of machine learning algorithms and smart models to convert raw data into valuable information. This can empower predictive maintenance, energy optimization, and dynamic traffic control AND thus stands as a pragmatic implementation of IoT solutions on the road to smart cities [17]–[22].

A. The Architectural Frameworks for Smart Cities

In Smart Cities, these architectural schemes attempt to take layered approaches wherein three major layers-perception, network, and application-receive an integral role to ensure smooth running of IoT systems. Underlying this architecture lies the sensing layer; this layer consists of sensors, actuators, and any other kind of device that is enabled with internet access, sensing, and capturing data of what goes on physically around the environment in real time. The Layer basically allows interaction of the two dimensions through sensing important information on concepts such as temperature, air quality, movement or patterns of traffic, energy consumption, and even waste levels. In addition to gathering data, these

sensors and devices have control functionalities whereby light intensity could be changed; alarms could be activated; or smart infrastructure gates could be opened under certain preconditions. The perception layer function is to ensure that smart city systems have real-time accurate data to rely on. It ensures the digital infrastructure is a true reflection of the state of the physical environment.

Perception layer information is gathered and transmitted via the communication backbone of the IoT structure, i.e., the network layer. The data transmitted care should be taken that these layers reach without further error and get processed remotely through either centralized cloud infrastructure or otherwise distributed systems. Technologies that nurture smart communication protocol in association with usages in this particular layer include ZigBee, Wi-Fi, 5G, Bluetooth, and LoRa. On top of this architecture sits the application layer-analyze data, transforms it, and present actionable insights to end-users and administrators. Hence, it allows for applications of intelligent traffic management systems, dynamic energy grids, predictive maintenance of urban infrastructure, and even better public services for healthcare and waste management. By converting raw data into meaningful outputs, the application layer allows such outputs to respond, adapt, and engage citizens to render smart city ecosystems efficient, scalable, and well-positioned to tackle complex challenges faced by urban landscapes. Altogether, these layers form a full-fledged modular IoT framework that truly stands in the way of effectively managing resources that further talk about the sustainability and livability conditions of contemporary cities [23]–[26].

B. Integration Challenges in IoT Architectures

The deployment of IoT architectures into smart cities faces a handful of challenges. Perhaps, the largest is the problem of interoperability. This means seamless interaction of heterogeneous devices, systems, and communication protocols in a unified IoT ecosystem. The task of interoperability is even more difficult to ensure as IoT devices are often sourced from different manufacturers, each endorsing proprietary standards and protocols. The incompatibility issues thus result in a fractured network and isolated data. For example, a city may use one communication protocol for its traffic management system and a completely different communication protocol for its energy grid. This lack of coordination represents inefficiency. Real interoperability demands standardization in the form of frameworks or middleware that can translate across systems so that data can be exchanged easily and communicated within the systems. Without this, integration and operation of the IoT systems in smart cities would remain fairly limited.

The other significant challenge is scalability as smart cities keep growing with an increasing number of IoT devices. The architectural framework should support fast-growing connected devices and massive data being generated from these devices. As cities grow and digital infrastructures become widespread, conventional networks typically face performance constraints and thus become slow or congested [14]. In addition, centralized cloud platforms grow overloaded with data influx and thus lead to inefficient storage and processing. Hence, scalable IoT solutions should be a combination of network architectures and edge computing that bring data processing close to the source and reduce the burden on the central system, thereby guaranteeing a responsive system. Without scalability measures, an IoT implementation stands to support itself less with very dynamic needs posed by smart city operations.

The third crucial challenge is real-time data processing, which must respond to instant decision-making needs. Several other smart city functions—emergency responses, intelligent traffic control, and utility management—require real-time analysis and immediate actions along with real-time data streams. This demands ultra-low latency networks, distributed computing architectures, and optimized processing algorithms. As the volume, velocity, and complexity of IoT-induced data increases, current systems are unable to cope with the load along with tolerance delays and drawbacks in performance. More concerns are added to data processing such as security, accuracy, and privacy. Advanced technologies such as 5G networks, AI-powered analytics, and distributed edge processing can act as enablers for mitigating these challenges by facilitating faster and more intelligent responses. The inability of reliable in time performance for critical functionality services coming from the IoT will result in smart city falling behind the expected marks for which it holds promise [11], [13], [14], [21], [25].

III. APPLICATIONS OF IOT IN SMART CITIES

The Internet of Things (IoT) plays a transformative role in smart cities by offering innovative solutions to urban challenges and enhancing the quality of life for citizens. One of its primary applications is in smart infrastructure management, where IoT-enabled systems optimize transportation, energy, and waste management. Real-time traffic data collected through sensors helps reduce congestion and improve road safety, while smart grids monitor energy consumption and support the integration of renewable sources. Similarly, IoT-based waste management systems use smart bins to ensure timely collection and minimize environmental impact. In terms of public safety and security, IoT facilitates intelligent surveillance through AI-powered cameras and sensors that detect unusual activities and environmental threats, enabling rapid emergency responses. It also enhances disaster management by providing early warnings and supporting coordinated evacuation efforts. Furthermore, IoT strengthens healthcare services by enabling real-time patient monitoring during emergencies. Another significant application lies in citizen engagement and service delivery, where IoT provides real-time information on transportation, utilities, and public services via mobile platforms. It empowers residents to report issues, access services, and participate in governance, fostering a more transparent and

inclusive city administration. IoT technologies also support sustainable urban living through smart homes, energy-efficient systems, and environmental monitoring tools. Collectively, these applications illustrate how IoT contributes to the creation of smarter, safer, and more responsive urban environments.

IV. ARCHITECTURAL CHALLENGES AND INNOVATIONS

Architectural challenges within IoT systems in smart cities include interoperability, scalability, security, and real-time processing, and all these are taken care of to deliver efficient and robust urban solutions. The variability of the devices and protocols with which these devices communicate results in massive interoperability problems. This therefore calls for a standardized framework or middleware. One key point is scalability as IoT devices have to sustain the high explosion growth of connected items and, indeed the volumes of information that correspond thereto as cities expand in size [30]. Robust security and strong privacy are necessary because systems become a prime cyberattack candidate, compromising personal data while degrading services to an alarming level. Applications such as traffic management and disaster response require real-time processing, which requires the use of advanced computing solutions such as edge computing and 5G networks. Blockchain technologies that enable secure data sharing, AI-driven analytics that help in predictive decision-making, and modular architectures that allow flexible scaling are addressing these challenges to make way for more resilient, adaptive, and efficient IoT ecosystems in smart cities.

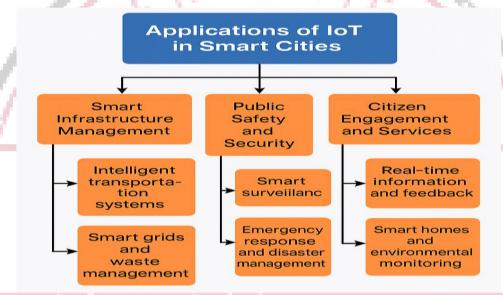


Figure 2: Flowchart of IoT Applications in Smart Cities

The figure 2 shows the flowchart of IoT deployment in smart cities. It begins with IoT-enabled devices and sensors acquiring real-time data from the environment, including traffic, energy consumption, public safety, and health parameters. The data gets transferred via communication networks such as Wi-Fi, 5G, or LoRa to cloud or edge computing platforms for processing and analysis by intelligent algorithms. The insights obtained from this analysis support various smart city applications ranging from smart infrastructure management to public safety and emergency response, remote health care, citizen engagement services, and environmental monitoring. These applications, in turn, promote urban efficiency, sustainability, and quality of life. A feedback loop ensures that continuous data collection continues to feed into and fine-tune these services, allowing for a dynamic and adaptive city management approach [26] –[29].

A. Security and Privacy in IoT Architectures

Security and privacy are a major concern in IoT architectures, particularly in smart cities, where massive amounts of sensitive data are collected, transmitted, and processed. Due to the large number of devices connected and the heterogeneity of communication protocols, IoT systems are inherently vulnerable to cyber threats, which can be used to compromise data integrity, disrupt services, or gain unauthorized access to critical infrastructure [30]. For example, a breach into a smart grid or traffic management could cause widespread disruptions and put the public at quite a risk. It is achieved through robust encryption protocols; secure authentication mechanisms; constant monitoring for potential threats or vulnerabilities. Blockchain technology might be used to enhance security, as blockchains provide decentralized and virtually tamper-proof data storage. AI-powered anomaly detection systems can identify and automatically respond to cyberattacks.

Privacy is another major challenge because IoT systems often collect highly sensitive personal and behavioural data from citizens. This includes information from surveillance cameras, health monitoring devices, and smart home systems, which, if mishandled, can lead to privacy violations or misuse. Data protection ensures that there are strict access

controls, anonymization of sensitive data, and compliance with regulations such as GDPR and CCPA [31]. Trust among citizens is established by the transparency in data collection, storage, and use. Privacy-by-design in IoT architectures needs to be inculcated, wherein privacy measures are integrated within the system at the conceptualization stage rather than becoming an afterthought. The security and privacy of the smart city's IoT system can be taken care of by ensuring proper working and ethical operation to build confidence among users while making urban innovations successful.

B. Scalability and Interoperability Solutions

Scaling issues also appear within the architecture as smart cities are extended to accommodate an increasingly growing number of connected devices, generating significant data volumes. In the meantime, traditional centralised architectures will struggle to accommodate these needs in relation to network congestion, latency, and diminished performance. Innovation, in this regard, is through edge computing and fog computing, that helps in the distribution of processing near to the source of data, so it is not overburdened on the centralized cloud system, and it also has to provide faster response times. The other important role is scalable cloud platforms with elastic capabilities that allow resources to be dynamically allocated based on demand. Furthermore, 5G networks ensure high bandwidth and low latency that is necessary to enable high-density devices in smart cities. The solutions help ensure that IoT systems scale effortlessly without efficiency or reliability losses.

Interoperability is the critical component in the integration of all the various devices and systems used in IoT ecosystems. Fragmented networks, due to lack of standardization in communication protocols and device frameworks, make it less effective for IoT applications. Therefore, open standards and frameworks such as MQTT, CoAP, and IoT are being implemented to enable seamless communication across heterogeneous devices. Middleware solutions translate among different protocols to allow integration with minimal modification to previous systems [33]. One of the new emerging technologies is the digital twin technology, which further supports interoperability through the virtualization of physical assets. With all of these innovations, smart cities would be able to construct an interconnected, scalable, and interoperable IoT network capable of delivering a unified and effective urban solution.

C. Emerging Technologies Enhancing IoT Architectures

The use of emerging technologies like Artificial Intelligence and edge computing is changing the architectures of IoT in smart city systems to be more efficient and intelligent. AI is playing a key role by analyzing the huge amount of data that IoT devices produce to find patterns, predict outcomes, and make decisions autonomously. For example, in the area of traffic management, algorithms which depend on AI can shift signal-timing accordingly, keeping into mind real-time flows and consequently reducing congestion, while it boosts mobility. Similarly, predictive maintenance improves owing to data interpretation by an AI-driven process from sensors set in bridges or pipelines for prevention before failure [34]. In the system reliability, it guarantees; at the same time, cost is decreased. With this comes the closeness of processing data closer to where they are needed, making the occurrence of real-time decisions along with reduced latency. Such instances, where milliseconds count for example, in autonomous vehicle or disaster response, with Edge Computing ensure that the core operations of critical nature can be executed without any latencies so overall efficiency and responsiveness of an IoT system is enhanced.

Another emerging innovation working through IoT architecture is Blockchain Technology. Blockchain ensures safe data sharing between IoT devices and stakeholders through a decentralized and tamper-proof ledger. This is highly valuable in applications such as energy trading in smart grids where blockchain can facilitate transparent and secure peer-to-peer transactions [35]. Moreover, with blockchain integrity, unauthorized amendments are out of question, making it extremely fit to applications that require strong trust values, such as a healthcare or public safety system record. When combined with AI and edge computing, it represents a robust IoT-based ecosystem. Data is efficiently processed not only but also protects it from cyber threats. These technologies empower smart cities to implement scalable, secure, and intelligent IoT architectures, which help innovate and improve sustainability in the urban ecosystem.

V. CONCLUSION

IoT integration with smart city solutions has proven to be a must-have in tackling ever-growing challenges of urbanization, such as resource optimization, traffic congestion, public safety, and environment sustainability. Through its multi-layered architecture, for sensing, networking, and application domains all services that come out of the IoT are enhanced with real-time data to improve infrastructure management and delivery. There remain challenges that discourage deployment of IoT in urban spaces: issues of interoperability, scalability, real-time demands of processing, and data security. With the aim of overcoming such constraints, implementation of technologies like AI, blockchain, and edge computing brings solutions to ensure an IoT system could be more responsive, secure, and scalable. In parallel with cities continuing to grow and evolve, IoT will continue to remain the driving force in creating smart, connected, and inclusive urban environments. To conclude, the paper views IoT as not just a mere technological enabler but as a transformative force that will form the very basis of intelligent and sustainable cities.

References

- [1] S. Kumar, A. Kumar, C. Gupta, and A. Chaturvedi, "Future Trends in Fault Detection Strategies for DC Microgrid," *Proc. 2024 IEEE 16th Int. Conf. Commun. Syst. Netw. Technol. CICN 2024*, pp. 727–731, 2024, doi: 10.1109/CICN63059.2024.10847358.
- [2] C. B. Singh, A. Kumar, C. Gupta, S. Cience, T. Echnology, and D. C. Dc, "Comparative performance evaluation of multi level inverter for power quality improvement," vol. 12, no. 2, pp. 1–7, 2024.
- [3] C. Gupta and V. K. Aharwal, "Design of Multi Input Converter Topology for Distinct Energy Sources," *SAMRIDDHI*, vol. 14, no. 4, pp. 1–5, 2022, doi: 10.18090/samriddhi.v14i04.09.
- [4] A. Kumar and S. Jain, "Enhancement of Power Quality with Increased Levels of Multi-level Inverters in Smart Grid Applications," vol. 14, no. 4, pp. 1–5, 2022, doi: 10.18090/samriddhi.v14i04.07.
- [5] S. Kumar, A. Chaturvedi, A. Kumar, and C. Gupta, "Optimizing BLDC Motor Control in Electric Vehicles Using Hysteresis Current Controlled Boost Converters," *Proc.* 2024 IEEE 16th Int. Conf. Commun. Syst. Netw. Technol. CICN 2024, pp. 743–748, 2024, doi: 10.1109/CICN63059.2024.10847341.
- [6] C. Gupta and V. K. Aharwal, "Optimizing the performance of Triple Input DC-DC converter in an Integrated System," *J. Integr. Sci. Technol.*, vol. 10, no. 3, pp. 215–220, 2022.
- [7] A. Kumar and S. Jain, "Predictive Switching Control for Multilevel Inverter using CNN-LSTM for Voltage Regulation," vol. 11, pp. 1–9, 2022.
- [8] S. Kumar, A. Kumar, C. Gupta, A. Chaturvedi, and A. P. Tripathi, "Synergy of AI and PMBLDC Motors: Enhancing Efficiency in Electric Vehicles," *IEEE Int. Conf. "Computational, Commun. Inf. Technol. ICCCIT* 2025, pp. 68–73, 2025, doi: 10.1109/ICCCIT62592.2025.10927757.
- [9] C. Gupta and V. K. Aharwal, "Design and simulation of Multi-Input Converter for Renewable energy sources," *J. Integr. Sci. Technol.*, vol. 11, no. 3, pp. 1–7, 2023.
- [10] A. Kumar and S. Jain, "Critical Analysis on Multilevel Inverter Designs for," vol. 14, no. 3, 2022, doi: 10.18090/samriddhi.v14i03.22.
- [11] S. Khan, C. Gupta, and A. Kumar, "An Analysis of Electric Vehicles Charging Technology and Optimal Size Estimation," vol. 04, no. 04, pp. 125–131, 2021.
- [12] C. G. Aditya Hridaya, "International Journal of Current Trends in Engineering & Technology ISSN: 2395-3152 AN OPTIMIZATION TECHNIQUE USED FOR ANALYSIS OF A HYBRID International Journal of Current Trends in Engineering & Technology ISSN: 2395-3152," *Int. J. Curr. Trends Eng. Technol.*, vol. 06, no. October, pp. 136–143, 2015.
- [13] V. Meena and C. Gupta, "A Review of Design, Development, Control and Applications of DC DC Converters," no. 2581, pp. 28–33, 2018.
- P. Mahapatra and C. Gupta, "Study of Optimization in Economical Parameters for Hybrid Renewable Energy System," Res. J. Eng. Technol. ..., vol. 03, no. 02, pp. 63–65, 2020, [Online]. Available: http://www.rjetm.in/RJETM/Vol03_Issue02/Study of Optimization in Economical Parameters for Hybrid Renewable Energy System.pdf.
- [15] K. Jagwani, "A Critical Survey on Efficient Energy Techniques for DC Drives based System," pp. 87–93, 2018.
- [16] P. Verma and C. Gupta, "A Survey on Grid Connected Solar Photovoltaic System," *Int. Conf. Contemp. Technol. Solut. Towar. fulfilment Soc. Needs*, pp. 106–110, 2018, [Online]. Available: https://www.academia.edu/37819420/A_Survey_on_Grid_Connected_Solar_Photovoltaic_System.
- [17] B. B. Khatua, C. Gupta, and A. Kumar, "Harmonic Investigation Analysis of Cascade H Bridge Multilevel Inverter with Conventional Inverter using PSIM," vol. 04, no. 03, pp. 9–14, 2021.
- [18] K. Jagwani, "Contemporary Technological Solutions towards fulfilment of Social Needs A Design Analysis of Energy Saving Through Regenerative Braking in Diesel Locomotive with Super-capacitors," pp. 94–99, 2018.
- [19] R. Kumar and C. Gupta, "Methods for Reducing Harmonics in Wind Energy Conversion Systems: A Review I . Introduction II . Wind Energy Conversion System III . Harmonic Mitigation Methods," vol. 04, no. 02, pp. 1–5, 2021.
- [20] P. Ahirwar and C. Gupta, "Simulation of Continuous Mode Hybrid Power Station with Hybrid Controller," vol. 03, no. 02, pp. 58–62, 2020.
- [21] A. Hridaya and C. Gupta, "Hybrid Optimization Technique Used for Economic Operation of Microgrid System," *Academia.Edu*, vol. 5, no. 5, pp. 5–10, 2015, [Online]. Available:

- http://www.academia.edu/download/43298136/Aditya_pape_1.pdf.
- [22] A. K. Singh and C. Gupta, "Controlling of Variable Structure Power Electronics for Self-Contained Photovoltaic Power Technologies," vol. 05, no. 02, pp. 70–77, 2022.
- [23] S. Kumar and A. Kumar, "Single Phase Seventeen Level Fuzzy-PWM Based Multicarrier Multilevel Inverter with Reduced Number of Switches."
- [24] P. Verma and M. T. Student, "Three Phase Grid Connected Solar Photovoltaic System with Power Quality Analysis," pp. 111–119, 2018.
- [25] A. Raj, A. Kumar, and C. Gupta, "Shunt Active Filters: A Review on Control Techniques II. Shunt Active Power Filter," vol. 05, no. 02, pp. 78–81, 2022.
- [26] S. Kumar and A. Kumar, "A Review on PWM Based Multicarrier Multilevel Inverter with Reduced Number of Switches," *Smart Moves J. Ijoscience*, vol. 6, no. 7, pp. 24–31, 2020, doi: 10.24113/ijoscience.v6i7.309.
- [27] Razmjoo, A., Gandomi, A., Mahlooji, M., Astiaso Garcia, D., Mirjalili, S., Rezvani, A., ... & Memon, S. (2022). An investigation of the policies and crucial sectors of smart cities based on IoT application. *Applied Sciences*, 12(5), 2672.
- [28] Al-Ansi, A. M., Garad, A., Jaboob, M., & Al-Ansi, A. (2024). Elevating e-government: Unleashing the power of AI and IoT for enhanced public services. *Heliyon*, 10(23).
- [29] Kangana, N., Kankanamge, N., De Silva, C., Goonetilleke, A., Mahamood, R., & Ranasinghe, D. (2024). Bridging Community Engagement and Technological Innovation for Creating Smart and Resilient Cities: A Systematic Literature Review. *Smart Cities*, 7(6), 3823-3852.
- [30] Rodríguez Bolívar, M. P., Alcaide Muñoz, L., & Morales Marín, M. (2024, June). The use and theoretical support of emerging technologies for citizen participation in cities. A Systematic Literature Review in DGRL. In *Proceedings of the 25th Annual International Conference on Digital Government Research* (pp. 295-304).
- [31] Alhaidari, F., Rahman, A., & Zagrouba, R. (2023). Cloud of Things: architecture, applications and challenges. *Journal of Ambient Intelligence and Humanized Computing*, 14(5), 5957-5975.
- [32] Alabdulatif, A., Thilakarathne, N. N., Lawal, Z. K., Fahim, K. E., & Zakari, R. Y. (2023). Internet of nano-things (iont): A comprehensive review from architecture to security and privacy challenges. *Sensors*, 23(5), 2807.
- [33] Magara, T., & Zhou, Y. (2024). Internet of Things (IoT) of Smart Homes: Privacy and Security. Journal of *Electrical and Computer Engineering*, 2024(1), 7716956.

